This was originally posted on www.racingknowledge.com by myself, in order to serve as a tuning guide
for some "newbies" there. However, I have found it to be invaluable, and hence have converted it to HTML
and have put it up here for reference.
The following is a guide to tuning your car with a SAFC, AFC, VPC, AFR, etc. It
starts with basic techniques and proceeds to moderately advanced ideas.
I guess this guide has been getting around the internet a bit, so let me specify a thing or two: This was originally intended for DSM's, so the setup and fuel trims sections in particular may not apply to other cars.
Enjoy!
STEP 1: Setting up the car and the SAFC.
Before we begin the guide on how to tune with a SAFC, you must make sure the car is set up correctly to do so.
Make sure all the fuel components are in good condition, and make sure you have no boost or vacuum leaks. Also,
if you have a 255 lph or larger fuel pump with no adjustable regulator, then either get a new reg or don't try to use
the fuel trim techniques outlined below.
Second of all, setting up the SAFC. At this point, I will assume that you have it wired in properly, if you do not,
there are plenty of directions in the VFAQ. Also, may I suggest that you DO NOT do the "blue wire mod", it has
been proven to degenerate the O2 sensor's signal.
In the Th-Point section of the SAFC, set the low trigger at 30%, and the high trigger around 80-85%.
In the NePoint section, set them to: 1k, 2k, 3k, 4k, 4.5k, 5k, 6k, and 7k,.
Now, you want to use baseline corrections for fuel injectors. If you have 450's, leave both tables at zero. If you
have 550's, put them around -10%. If you have 660's, usually around -18% would be a fine starting point. If you
have a hacked MAS, then you will want to use about 5% MORE than these values.
The next section will cover fuel trims, and how to set the low throttle table.
UPDATE FOR SAFC-2: If you are using one of the newer SAFC-2's, which came out in early 2003, then you have to use very similar settings, but they are going to differ a bit. For one thing, the SAFC-2 has 12 adjustable NEPoints, rather than 8 like the original unit. This just means that you have 4 more rpm points to play with, I would suggest adding them around 3.5k, 4.5k, 5.5k, and 6.5k rpm, but that is your choice.
STEP 2: Fuel trims and low throttle
Before proceeding past this point, you MUST have a logger of some sort!!
Once you have the SAFC all set up, you should first start by setting the low throttle points, using the fuel trims.
Doing this will require a basic knowledge of fuel trims, so I have outlined them below:
The ECU is, in essence, just a big set of spreadsheets (also known as "fuel maps"). It takes input from the MAS
(in the form of Hz, temperature, and barometric pressure) and comes up with a final value that represents the
amount of air entering the engine. It also looks at the engine's RPM. With the RPM and an airflow value in mind,
the ECU will look to the fuel tables, and find the amount of fuel it should inject into the motor.
Then the O2 sensor comes into play. The O2 sensor tells the ECU what the a/f mixture looks like, if it is rich, lean,
or right in the middle (stoich.). If the O2 sensor says that the mixture is lean, then the ECU will add a bit more fuel
on top of what the tables tell it, until the O2 values get close to stoich. If it has to do this for a certain period of time,
it will take note of that in the fuel trims.
Example: You are pulling in 30Hz of air at 800 rpm (idle). The ECU looks this up, and decides to inject 2.1 ms
of fuel. However, the O2 sensor decides this is not enough. The ECU bumps this up to 2.2 ms, 2.3 ms, and finally
2.4 ms, when the O2 finally says that is perfect. If this keeps happening over a period of time, the ECU will increase
the Long Term Fuel Trim to 114%, since 2.4 is 14% more than 2.1. It will, from then on, add 14% more fuel
whenever it is in the range of that Fuel trim.
1g: 1g's have 4 fuel trims. The low trim is for idle and low rpm cruise conditions. The middle trim is for medium
cruse rpm's (1500-2500ish) and the high fuel trim is for 2500+ rpm. The O2 trim is constantly changing with the
O2 sensor, and it is what will cause the Long term fuel trims to change.
The approximate airflow ranges for the three trims are:
Low: 0-125 Hz
Mid: 100-175Hz
Hi: 175+ Hz
2g: 2g's only have 2 fuel trims, a long term fuel trim (LTFT) and a short term fuel trim (STFT). The STFT varies
with the O2 sensor, an the LTFT goes for every rpm range. Since the STFT directly effects the LTFT, then you
can just add the two together, and tune from there. For example, if the LTFT is +20%, and the STFT is -5%,
you are at approximately +15%.
You can also do this addition trick on a 1g with a TMO/Pocketlogger type setup.
Whew, that was exciting, but I think I covered it all. Now, on to the tuning.
Set up your logger to display RPM, Airflow, and all the fuel trims your car has. Start the car and let it fully warm up.
Leave it at idle, and we will begin to tune the low throttle table in the SAFC.
Now, look at the low fuel trim (2g's only have the LTFT). If it is positive, add a few percent on the SAFC at the
1000 rpm point. This is not an exact science, but usually for about every 3-5% on the logger, you need 1% on the
SAFC. After adding or subtracting a few percent, let the car idle for a few minutes, and watch the fuel trims change.
This may take a while, especially in a 1g, so just wait. One thing you can
do to speed up the process is reset the ECU before you start to tune. This
will reset the trims back to 100, so you can tune by the STFT (O2 trim) alone.
When this is done, free rev to 1500 rpm and hold it there. Do the same thing, it will probably still be on the low fuel
trim.
Continue to do this at 2k, and 3k rpm. After you are done and are fairly confident they are close, take the car for a
drive and see if they change. Try to get the fuel trims close to 100%, plus or minus 10% Keep in mind that in a 1g,
a perfect fuel trim is 100%, but in a 2g it's 0%.. That means that in a 2g, if the fuel trim is negative, you have to lean
it out a bit, and if it's positive, you have to richen it up.
Once they are within 5 or 10%, and they have stayed that way for a drive, you can carry the numbers across up to
7k rpm. So, if you have +5% at 3k and 4k rpm, use +5% at 4.5k, 5k, 6k, and 7k. Then, you will also want to use
+5% on your high throttle table, all the way across, until we begin to tune it in the next issue.
STEP 3: Hi Throttle
At this point, I will assume that you have your fuel trims leveled out near 100%, and that they have stayed like that
for several days of driving. Also, this assumes that you have used the same correction factor that you used for the
higher rpm's of the low table, all the way across the high table.
Also, make sure that you have no bad phantom knock, and that your base timing is set correctly to 5 degrees
(on a 1g).
Now, it's time to do some real tuning.
First, set up the logger. You want to make sure to log RPM, knock (if you can), timing advance, and airflow, and
not many more.
Now, go make a pull. It is best if you can make one in third (or fourth) gear, but if you really have to do second,
that might be ok to start. Make sure to go WIDE OPEN from 3k rpm to well above 6k. Also, make sure you
have your boost set where you want it, it is actually easier to tune if you set it a few psi BELOW where you want it.
Now, save the log, and bring it up. Look at the 3k rpm portion of the graph, at knock and timing. Now you have
to decide if, at 3000 rpm, you are rich, lean, or just right. If you are too rich, your O2 values will probably
be pretty high (over 1.00v in a 2g, and over .95v in a 1g, approximately) and you will have no knock (although you
can have rich knock, but we'll come back to that), and decent timing advance. If you are too lean, then you will
have less timing advance, and knock.
On a 1g, you want to tune for no knock, end of story.
On a 2g, you want to tune for timing advance. You want to keep the timing
advance graph on the logger above, say, 15-16 degrees, and you want it to be
nice and smooth. The timing will almost always dip lower than that when
the boost comes on at lower engine speeds, around 3k-4k rpm. Then, the
timing should rise SMOOTHLY to a solid 16+ degrees. Any dips in the curve,
or flat spots, tend to indicate knock.
So, with that information, decide if the 3000 rpm point is rich, lean, or just right. Then, add or subtract just a couple
% of correction, depending on your findings. You want to only do a few percent at a time.
Then move on to the 4k rpm point, and do the same thing, looking at the logger.
Proceed with this up to 7k, and then make another pull with the logger to see
the effects of your changes. This will get easier as you get more experienced,
but it's not really that difficult.
If you richen the SAFC and the timing drops, that means you're not knocking and
the increased airflow is causing the timing to go down. This is covered in
the next section.
Tuning: Advanced
So, you have mastered the art of getting your fuel trims right at 100%, and you can make nice WOT pulls with no
knock and/or good timing advance? You've basically learned all that you need to know to have a car that runs well,
but there is a little more to learn if you want run "really really well." This is where you will most benefit not just from
my information, but from talking to other members of this board as well. I also ask that guys who have lots of tuning
experience (you know who you are) add their input here as well.
-Timing vs. Airflow
Now, while the ECU has tables for the amount of fuel it needs to inject, it also has table for how much timing
advance it should give you, and tables for how much it should advance timing depending on knock.
UPDATE: The old DSM myth that 0-3 knock sum means timing gets advanced, and so
on, is just that. While it looks like it's true in most cases, the real
method used by the ECU is different.
In reality, the amount of timing the ECU takes out is directly proportional to the knock sum. The ECU takes the knock sum value, and multiplies it by 90/255, and thus comes up with "degrees of knock retard." 90/255 is very close to one-third, so by dividing the knock sum by 3 you get very close to the amount of timing retard.
If the timing maps say that you should have 18 degrees of advance, but you also have a knock sum of 3, then you will end up with very close to 17 degrees of advance.
While 2g
guys cannot view this knock sum on a logger, it is there, you just have to guess what it is by the behavior of the
timing curve.
Now, the timing tables in the ECU, just like the fuel maps, are indexed by airflow and rpm. With a SAFC, this has
an added effect. Since a SAFC intercepts that signal from the MAS to the ECU and modifies it, it can change the
amount of airflow that the ECU "sees." If you have to correct your SAFC into the positive range, than the ECU will
see more airflow Hz than the MAF is outputting, and could change the timing map you are following. The problem with this is, higher
airflow levels get less timing advance for safety, and lower airflow levels get more timing advance, because the
ECU thinks you are pulling in less air.
By leaning out the SAFC (big injectors, more fuel pressure, race gas) you
decrease the amount of airflow that the ECU sees, and therefore you usually will
get a bit more timing advance for power. This all assumes you have no knock, and
also keep in mind that more timing advance will give an engine a higher propensity to knock.
I have heard of 1g guys with 660 cc/min injectors getting timing advanced as much as 28+ degrees at WOT,
because you have to pull the SAFC correction factors down a lot due to the fact that 660's are 47% bigger than the
stock 450's.
-Fuel Cut
Another issue involving the amount of airflow the ECU sees, and the correction factors of the SAFC, is fuel cut.
For those of you who do not know, the ECU has a program that tells it to cut fuel when the airflow exceeds a
certain amount. Now, this is with the final calculated airflow, not just the Hz signal, which means that temperature
and barometeric pressure will effect fuel cut as well.
If you are to install, say, 550 cc/min injectors, you will be able to pull the correction factors within the SAFC
down about 10%, perhaps more. This means that the ECU will see about 10% less airflow under a given amount
of boost than it would have with the stock setup, which makes it much less likely for you to get fuel cut.
-Timing and Air/Fuel Ratio Curves
With the rpm based adjustability of the SAFC, you have the option to use different correction factors at each rpm point, even if the SAFC is reading the same load. This allows you to do a couple of things, which some people don't realize are possible, or beneficial.
The timing and air/fuel curves do not need to be flat at wide open throttle! As a matter of fact, they shouldn't be. Timing generally needs to be at the lowest advance as boost comes on to keep the motor from knocking, which it does automatically. Then, once you are at full boost and WOT, the point where you need to be the most careful with timing is around 5k rpm, which is the torque peak. The torque peak is the point of highest cylinder pressure, and thus the point where knock is more likely to occur. As engine speed increases past this point, you can usually squeeze out a little more advance, for two reasons. First, as VE drops off (you can se this reflected in the torque curve) cylinder pressure goes back down. Second of all, for a set amount of advance in degrees, the amount of time BTDC decreases as engine speed increases. You may want more timing to compensate for this.
The A/F ratio curve can do a similar thing, transition richer around the torque and boost onset areas, and lean out at higher rpm's.
Just be careful, as you're more likely to run out of fuel at higher engine speeds (less time for the injector to open), and you're also more likely to do damage if you do knock.
Using the Monitor Function:
One thing it seems to me that a lot of people aren't familiar with, is the monitor function of the SAFC. There are a whole bunch of choices, but there are only a couple that you will really find useful:
RPM: This is obvious, it lets you see the speed of the motor.
Airflow: This will allow you to read the Hz output from the MAF, before you apply SAFC correction factors to it. This will let you see the airflow if it goes over 1606 Hz (the maximum a logger can read), and will let you compare numbers to compare performance gains.
TPS: This shows you the throttle position as a percentage. This may not match the number on the logger (mat say 0% when the logger says around 10%), this is normal.
Corr: This lets you see the correction factor that is currently being applied. This isn't good for a whole lot, but it can give you an idea for how the SAFC applies corrections when you are between RPM or throttle points.
It also won't hurt for you to become familiar with the save and replay functions of the graph mode, but I'm not the manual, so you figure that out.